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Introduction

BEFORE you begin, why read this over the billions of other guides to the foundations of artificial intelli-
gence?

The answer lies in who this was written for. Some friends planned to read technical Al papers without a
significant formal foundation. We assembled this content to help bridge that gap efficiently—a few hours’
investment with massive upside in technical understanding. If that resonates, you are in the right place.

This "ML Grimoire” won’t teach you everything about machine learning; the field overflows with jargon.
You could spend thousands of hours exploring these topics—that’s called a PhD. Instead, this text is intended
to enable rapid entry into technical AI discourse, taking you from 0 to 0.5.

There’s a common saying: "learning Chinese is a five-year lesson in humility." The same holds for Al.
Mastering every area is improbable. Yet although specialties differ, they share a common language. This text
aims to help you become fluent in that shared language.

A Note on Al for Education

We are exceptionally optimistic about the synergies Al brings to education. As such, much of this document
was edited and formatted using state-of-the-art large language models. In some cases, Al provided incredible
explanations or diagrams for difficult concepts; our work optimizes for clarity and helpfulness over humanness.
We are excited that the capabilities of Al as an educational copilot will only improve in the coming years.

1 Defining Al

YOU’VE noticed we’ve used Al and ML interchangeably. Let’s clarify the difference:

Artificial Intelligence (AI) describes computers handling previously human-specific intelligence-
requiring tasks. Al can be narrow, meaning well suited for a specific task, or general, meaning it performs
well across the spectra of intelligence work.

Machine Learning (ML) is a subfield of Al It focuses on algorithms that learn patterns from data,
rather than following explicit instructions. Machine learning is the overarching field of Deep Learning, a
subspace of ML involving (often) large, powerful models with multiple layers that learn increasingly complex
patterns from data.

Fundamentally, artificial intelligence systems undertake domains previously considered uniquely human,

such as learning and reasoning. Instead of rigidly programming systems, which has been the paradigm of
computer engineering since its inception, ML unlocks the ability to build adaptive, evolving approaches.

The AI Technology Stack

N

Hardware Data Algorithms Applications Integration Talent
Physical Training Core Use System Human
Infrastructure Resources Methods Cases Deployment Expertise

While physical infrastructure matters tremendously, for the purposes of this Grimoire we’ll focus on the
digital realm—data and algorithms. But first, let’s establish a mathematical foundation.



2 Mathematical Foundations

HIS section covers essential Linear Algebra, Calculus, and Statistics needed to understand AI foundations.
It is by no means exhaustive. However, it is background that enables movement beyond abstraction into
high-level technical comprehension.

Why does this matter? Many surprisingly simple Al concepts are encoded in the language of mathematics.
Linear algebra—the first field of math we cover—provides a framework for converting many of the intuitive,
geometric concepts of Al into more versatile algebraic (numerical) forms. Calculus then lets us work with
these numerical representations to achieve powerful results such as the "learning" that powers AI. And
statistics is central to understanding data distributions, making predictions under uncertainty, estimating
model parameters, and evaluating model performance.

2.1 DMathematical Notation

Here’s some essential notation for ML foundations. This section is meant to serve as an index—not a chapter
you need to fully understand on a first pass.

Logic and Operations
Y - "for all"

J - "there exists"

€ - "is an element of"
C - "is a subset of"
= - "implies"

Variable Conventions
1,J, k - indices
m,n - dimensions or sizes
x,y - input and output variables

w - weights in neural networks
b - bias terms
6 - parameters (general)
« - learning rate

A - regularization parameter

Vectors and Matrices
x,y,w - vectors (bold lowercase)
W, XY - matrices (bold uppercase)
xz; - i-th element of vector x

w;; - element at i-th row and j-th column of W

xT - transpose of x
W - inverse of matrix W

|x| - norm of vector x



Sets and Spaces
N - natural numbers

Z - integers
R - real numbers
R™ - n-dimensional real vector space

ML-Specific Notation
L - loss function

J - objective/cost function
7 - predicted output

D - dataset

X - input feature matrix
Y - target/output matrix

Set Operations
AuB={z:zxeAorxe B}

AnB={z:2€ Aand x € B}
Ax B=1{(a,b):a€ Aand be B}

P(A) = {X : X C A}

2.1.1 Asymptotic Analysis

Definition: f(n) is O(g(n)) if there exist constants ¢ > 0 and N > 0 such that:
f(n) <cg(n) foralln > N.

Time

O(n?)

o

/ n (input size)

Asymptotic Analysis Visualized

Figure 1:



Common classes ordered by scaling rate:
O(1) : Constant
O(logn) : Logarithmic
Linear
O(n?) : Quadratic
O(2™) : Exponential

2.2 Linear Algebra

Linear algebra forms much of the backbone of machine learning. Let’s explore some key concepts.

2.2.1 Matrices and Matrix Operations

A matrix is fundamentally a list of numbers with dimensions m x n, where m represents rows and n represents
columns. A vector is a 1D matrix, while a tensor extends this to higher dimensions with additional metadata
for Al operations.

Matrix Addition
1 2 n 5 6] |6 8
3 4 7 8| |10 12

Subtraction (which is effectively just addition of a negative number) works similarly. Both match elements
together in same-shape matrices and perform the operation one-by-one. Matrix multiplication, on the other
hand, comes in several forms:

Types of Matrix Multiplication
1. Scalar multiplication: Multiply every element by a scalar

Let a= [a1 ag] .
Then, k x a = [ka1 kag]

2. Hadamard (pointwise) product (®): Element-wise multiplication

Let a = [al ag] and b= [bl bg] .
Then, a®b = [a1b1 agbg]

3. Dot product: For vectors, multiply corresponding elements and sum

by
Leta=[a1 as ag] and b= |by
b3

Then, a-b = a1b; + asbs + asbs

4. Matrix multiplication: Each element is the dot product of a row and a column

_la b e f
LetA[c d] and B[g h]'




ae +bg af + bh]

Then, A x B = [ce—i—dg cf +dh|

5. Kronecker product (®): Block-wise multiplication of matrices

LetA—[a b] and B—[e f.
¢ g

d h |
aB bB “ ; {L b ; £
Then’A®B_[cB dB]_ e f d e f
¢ g h g h
Expanding the elements explicitly:

ae af be bf

_|lag ah bg bh

A®B = ce cf de df

cg ch dg dh

The Kronecker product increases the size of the resulting matrix, where if A is an m x n matrix and
B is a p x ¢ matrix, then A ® B results in an (mp) x (ng) matrix.

Examples: Matrix Multiplication

1. 3X3 Matrix multiplication

(1) +2(1)+3(0) 1(0) +2(2) +3(3) 1(2)+2(1) +3(2)
= [4(1) +5(1) +6(0) 4(0) +5(2) +6(3) 4(2) +5(1) +6(2)
7(1) +8(1) +9(0) 7(0) +8(2) +9(3) 7(2)+8(1) +9(2)

3 13 10

=19 28 25

15 43 40

2. 3D Matrix (batched) multiplication: Extends to multiple dimensions

. . 1 2 5 6
Given 2x2x2 matrix A : [[3 4] [7 8”

. 1 0 1 1
and 2x2x2 matrix B : HO 1] [O 0”

e | R I R | [ R I

Note: For matrix multiplication, the number of columns in the first matrix must be equal to the number of
rows in the second (Cy = Rz). Result dimensions: (R; x Cs).




2.2.2 Determinants

The determinant serves as a matrix’s "fingerprint", revealing important properties:

The Determinant

2% 2 matrices:

a b

det [c d] = ad — bc

3x3 matrices (Sarrus’ rule):

det =a(ei — fh) — b(di — fg) + c(dh — eg)

Q Q.
>0 o
S 0

Determinants describe significant information about a matrix, such as whether it can be inverted, as well as
information about each of the individual vectors. A column of a matrix is considered linearly independent
if it cannot be composed by somehow combining (through scaling and adding) the other columns. In a
geometric context, the determinant also describes how much a matrix scales a shape.

Linear Dependence and Zero Determinant

A set of vectors {vi,Vva,...,Vv,} is said to be linearly dependent if there exist scalars ¢, ca, ..., Cy,
not all zero, such that
c1vi +cove + -+ c,vy, = 0.

This implies that at least one vector can be written as a linear combination of the others.

A—B j]

Its rows are ry = [1 2] and ro = [2 4]. Notice that

Example: Consider the matrix

2xr; =[2 4] =r,,

which shows that rs is a linear combination of ry; hence, the rows of A are linearly dependent. This is
confirmed by the determinant:

det(A) =1-4—-2.2=4—-4=0.

In machine learning, we typically care that our determinant is nonzero (so that we can perform a versatile
set of operations on our matrix).

Additionally, the determinant of a matrix is invariant, or unchanged, by many of the operations that
you perform on matrices. These include elementary row operations, where you essentially take linear
combinations of rows, and transposition, which involves swapping a matrix’s rows with its columns. This
invariance provides us with valuable information as you operate across large amounts of matrices.



Transposing a Matrix

Given some matrix A:

b
_c d_
The transpose of AT is expressed as:
W ]
_b d_

2.2.3 Vector Spaces

A vector space represents concepts as points in multi-dimensional space, where mathematical operations
correspond to meaningful transformations. Perhaps the most intuitive three-dimensional vector space is R?,
where you measure distance between points by taking the Euclidean Distance between them:

FEuclidean Distance

Given three dimensional points (z1, 22, x3), (y1,¥y2,y3), you compute their euclidean distance as:

V(@1 —y1)2 + (x2 — y2)? + (23 — y3)?

To get you more familiar with notation, this can be more compactly expressed as:

In addition to our notion of Euclidean distance, similarity between data points can be measured using
various distance metrics. A common one is cosine similarity, which measures the angle between the vectors,
producing values from -1 (opposite) to 1 (identical), independent of the magnitude of the vector. This metric
effectively captures semantic similarity by evaluating how closely vectors point in the same direction.

Cosine Similarity
A-B

~ |A[[B]
where A - B is the dot product and |A|, |B| are vector magnitudes. The key idea here is that A - B gets

closer to 1 for similar vectors. Hence, a larger cosine similarity means vectors are similar (unlike the
Euclidean metric, where smaller distances represent closeness).

cos(0)

Word embeddings like Word2Vec and GloVe leverage this property by mapping words to vectors such that
semantic relationships become mathematical operations. The canonical example demonstrates this elegantly:



\vqueen
\
\
\
Vo
Uking
\U voman
\
. \
king — queen N
i Uman
man — woman
0
T

Figure 2: Vector Space Relationships

This is fundamentally amazing and allows us to perform robust mathematics and searching in our
embedding space. These properties of embeddings are what allow us to search for "similar" words or phrases,
even when exact matches don’t exist.

2.2.4 Eigenvectors and Eigenvalues

Eigenvectors represent fundamental directions where transformation results only in scaling. The scaling
factor is the corresponding eigenvalue (\). The eigenvalue equation is Av = Av.

Finding Eigenvectors and Eigenvalues:

1. Set up (A—A)v=0

2. Solve det(A — XI) = 0 for eigenvalues

3. Find corresponding eigenvectors (solve for v)
4. Normalize if needed

Y Y
T T AU = At
U1
A
— T _— _ — T
)\2/172 = Al_fz
FZ
A1 > 1: stretching
A2 < 1: shrinking
Before Direction preserved After
Transformation Transformation

Figure 3: Linear Transformation
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2.2.5 Singular Value Decomposition

By the same mechanisms that let us multiply matrices, you can also break them into products of other
matrices. SVD decomposes any matrix M into three components:

SVD Decomposition
M =UXVT, where:
U: left singular vectors (m x m)

¥: diagonal matrix of singular values (m X n)
VT transposed right singular vectors (n x n)

U and V contain "directions" in the input and output space, and ¥ contains scaling factors (like eigenvalues
but always non-negative). Together, they describe how the matrix transforms data; singular values and their
vectors are the building blocks of linear transformations.

By breaking down matrices this way, SVD helps approximate, compress, and understand complex data by
keeping only the most important components. That is, you maintain the structure of our data while removing
some complexity.

2.2.6 Matrix Convolution

Matrix convolution represents a specialized operation where a kernel (or filter) matrix slides across an
input matrix, computing dot products at each position. Convolution is a more powerful tool than simple
multiplication to detect patterns in data. As such, convolution powers many image processing tasks, such as
Convolutional Neural Networks (CNNs).

Convolution "Flip and Slide" Process:

1. Flip kernel horizontally and vertically
2. Align with input matrix section

3. Compute dot product

4. Store result in output matrix

Example: 1D Convolution

123 4«|0]|=1[12 22 -3 —4].
-1

To preserve input dimensions, we can use zero padding—surrounding the input matrix with zeros. This
enables full convolutions across the entire input space. You can also adjust the stride, which is the step size
the convolutional filter uses as it moves across the input data. A stride of 1 moves the filter one pixel at a
time, while a stride of 2 moves two at a time, skipping every other pixel. Larger strides mean less overlap
between receptive fields (RF), the region in the input space that affects some particular neuron, and result in
smaller output feature maps. More on this in section 5.2.

11



Example: 2D Convolution with Padding
Input matrix M and kernel K:

0000
0120 1 0
M:0340’K:[0—1]
0000

Flip K horizontally and vertically:
-1 0
Kip = [ 0 1]

Slide and compute the full 3x3 output (stride = 1):

0--1+0-04+0-0+1-1) (0--1+0-04+1-0+2-1) (0-—1+0-04+2-0+0-1)
0--1+1-0+0-0+3-1) (1--1+2-04+3-0+4-1) (2-—1+0-04+4-0+0-1)
0--1+3-0+0-0+0-1) 3-—1+4-04+0-0+0-1) (4-—=1+0-0+0-0+0-1)

(0+0+0+1) (O+0+0+4+2) (0+0+0+0)
=[0+0+0+3) (-1+0+0+4) (—2+04+0+0)
(0+0+0+0) (-3+0+0+0) (—4+0+0+0)

1 2 0
=13 3 =2
0 -3 —4

2.3 Calculus

Upfront, we are not going to teach you Calculus—that’s what 3BluelBrown is for. However, a few concepts
are critical for ML and this section will briefly review them. There is some assumed knowledge here: for
example, you should already know what a derivative is (rate of change), and how to find one.

2.3.1 Gradient Descent

Gradient descent is an optimization technique that attempts to minimize "loss", where loss represents the
error in an algorithm. The gradient is the slope of the function—a vector of partial derivatives with respect
to its inputs. In 2D, it’s simply the slope; in higher dimensions, it points in the direction of steepest increase.

As such, if you have some n-dimensional surface, on which you are trying to find some local extrema
(minimum or maximum), then you can use the gradient as a sort of compass at every point to guide us in the
right direction.

Gradient Descent Process:

. Randomly initialize weights

. Calculate gradient at current position

. Scale gradient by learning rate (n)

. Move in direction of negative gradient

. Repeat until convergence or maximum iterations reached

U W N~

12


https://www.youtube.com/@3blue1brown

Min

Figure 4: Gradient Descent

There are three popular variants for actually implementing these updates. Batch Gradient Descent
(BGD) uses all the data for each update, while Stochastic Gradient Descent (SGD) and Mini-batch
Gradient Descent use a single sample and a small batch of samples, respectively.

Although Batch Gradient Descent perfectly computes the optimal, steepest direction at every update
point, it takes a long time since it uses all of the data. Stochastic and minibatch GD, on the other hand,
compute an approrimate optimal direction and do it much more efficiently due to their lower data requirement.
The resulting gradient estimate is an unbiased estimator of the true gradient for a given set of function
parameters. As such, they are often used in practice in place of BGD.

The learning rate 7 is important: too small means slow convergence (you have to take too many steps to
get anywhere on your function), too large risks overshooting (you completely miss your optimum by moving
the parameters too far). Consider also local versus global minima: in a hilly landscape, local minima represent
small valleys while the global minimum is the lowest point overall.

Gradient Ascent, the sister algorithm, maximizes reward values by adding rather than subtracting the
scaled gradient. While descent minimizes loss in neural networks, ascent commonly maximizes rewards in
reinforcement learning.

2.3.2 Chain Rule

The chain rule is essential for training neural networks through backpropagation. For composed functions
(like the layers of a neural network), it allows us to calculate how changes propagate backward:

If y = f(g(x)), then: Z—Z = % X %,

This finds how each parameter affects the final output, making gradient-based learning possible.

2.3.3 Partial Derivatives

Partial derivatives are important for functions of multiple variables—virtually everything in ML. They
measure how a function changes when adjusting one variable while keeping others constant; in other words,
how each variable changes with respect to the other variables.

13



For f(x,y) = 23 + 22y + y:

g = 322 + 2y (treat y as constant)
gi = 2z + 1 (treat x as constant)

These concepts form much of the mathematical foundation of neural network learning: forward pass

computes predictions, partial derivatives compute gradients, chain rule propagates gradients backward, and
gradient descent updates weights.

2.4 Probability and Statistics

Probability distributions help estimate the likelihood of outcomes. Although hundreds exist, a few distributions
form the foundation of machine learning. The golden rule: Probabilities always sum to 1.

2.4.1 Essential Distributions

Bernoulli/Uniform Distribution

P(success) = p, P(failure) =1—p

Two discrete outcomes, like heads/tails. Fair die rolls give a uniform distribution (1/6 each).

Binomial Distribution

The Binomial Distribution requires n distinct trials, binary success/failure, a constant probability p,
independent trials, and the counting of total successes.

Poisson Distribution

The Poisson distribution models random events at fixed rate A. It assumes independent time intervals,

uniform distribution across equal intervals, that probability scales with time, and that there are no simultaneous
events as intervals shrink.

Geometric Distribution

P(X=k)=(1-p)*"p

"Failures before success" with probability p. Negative binomial extends this to r successes.

Normal/Gaussian Distribution

14



The infamous Normal distribution is a perfect bell curve. By Central Limit Theorem, sums of
independent samples approach a normal distribution (i.e. the more things you sum, the more “normal” their
distribution becomes).

Normal Poisson Binomial
w=00=1 A=2 n=>5p=0.5
f(z) P(X = k) P(X = k)

T~ T

T L — k
Geometric Bernoulli
p=20.5 p=205
P(X =k) P(X =z)
I—p D
[ ] [ ]
k x

Figure 5: Probability Distributions Visualized

2.4.2 Bayes’ Theorem

Bayes’ theorem tells us the probability of an event occurring given that you have observed another related
event.

Bayes’ Theorem

P(B|A)P(A)
P(A|B) = —————
where:
P(A|B): Posterior probability (probability of A given B)
P(B|A): Likelihood (probability of B given A)
P(A): Prior probability (probability of A)
P(B): Evidence (probability of B)

The posterior probability P(A|B) represents what you believe after seeing the evidence. The likelihood
P(B|A) shows how probable our evidence is if our hypothesis is true. The prior probability P(A) reflects our
initial beliefs or assumptions. Finally, P(B) represents the overall probability of observing our evidence and
is a normalizing factor to keep our probabilities coherent.

Consider predicting snowfall in the city of New Haven: With a 30% prior probability of snow P(A) and a

70% probability of clouds when it is snowing P(B|A), given an overall 50% probability of clouds P(B), Bayes’
theorem updates our belief to a 42% probability of snow given that we observe clouds P(A|B).

15



2.4.3 Hypothesis Testing

Statistical hypothesis testing is a framework for uncertainty-based decisions by specifying hypotheses, choosing
a significance level, and calculating a test statistic. The null hypothesis H, represents the status quo,
while the alternative hypothesis is the claim of interest. For instance, when evaluating a model, your null
hypothesis might be "this model performs no better than random chance", while an alternative hypothesis
could be "this model outperforms random chance".

The p-value is the probability of observing our data (or more extreme data) if the null hypothesis were
true. It is NOT the probability that a hypothesis is correct. When you claim a model achieves "statistically
significant" improvements, you are actually saying the probability of seeing such improvements by chance,
assuming the null hypothesis is true, is very small (typically less than 5%).

H; is True H, is False
Reject Hy Type I Error Correct Decision
(False Positive) | (True Positive)

«@ 1— 3 (Power)

Fail to Reject Hy | Correct Decision | Type II Error
(True Negative) | (False Negative)
11—« 15}

Type I errors « (false positives) occur when you reject a true null hypothesis, while Type II errors 3
(false negatives) happen when you fail to reject a false null hypothesis. Minimizing « improves precision (the
ratio of true positives to all predicted positives) and minimizing 8 improves recall ((the ratio of true positives
to all actual positives) in machine learning evaluations. More on this in Section 6.4.2.

Type I and type II errors are commonplace, and it is important to keep in mind which you should be
optimizing for as different scenarios have different consequences.
2.4.4 Maximum Likelihood Estimation (MLE)

MLE finds the parameters most likely to reproduce some observed data. In neural networks, "minimizing
loss" means maximizing the likelihood of training data.

MLE Process

1. Express the probability of observations given parameters
2. Find the parameters maximizing this probability
3. Often log-likelihood is used for computational ease:

log(ab) = log(a) + log(b)

For Gaussian distributions, MLE gives sample mean and variance as optimal parameters. Modern ar-
chitectures extend this principle to complex parameter spaces. Mathematically, MLE seeks the parameter
estimate that maximizes the likelihood function of the parameters given the observed data. This function is
calculated as the product of the probability of each individual data point given those parameters. Common
loss functions directly correspond to negative log-likelihoods: mean squared error assumes Gaussian noise,
while cross-entropy loss corresponds to categorical distributions.

This concludes our section on fundamental mathematics. There is A LOT you could go deeper into here,
and should. In the next section, we will review the core ML concepts that build on these topics.

16



3 ML Foundations

BEFORE diving into specific algorithms and architectures, it is helpful to understand some fundamental
principles regarding how we develop models, and that govern how models learn and generalize.

At its core, machine learning works because the patterns that exist in the real world—which are expressed
in large dimensions—can be adequately reduced to representations in lower dimensions. For example, a
human face can be explained with millions of pixels, yet we can capture its most important features with
just a few hundred variables that encode characteristics like face shape, eye position, and expression. This
concept is known as the "manifold hypothesis"; this reduction is the reason models are good at taking in
enormous amounts of information and learning sensible patterns.

3.1 Bias-variance tradeoff

The bias-variance tradeoff is one of the fundamental challenges in machine learning, describing the tension
between two types of error that occur in machine learning models.

Bias reflects the error introduced by approximating a real-world problem with a simplified model. It
measures how far off our model’s predictions are from the true (correct) values, even with an infinite amount
of training data. High bias leads to underfitting, where the model makes oversimplified assumptions about
the underlying patterns in the data.

Variance, conversely, measures how much our model’s predictions would fluctuate if trained on different
datasets. High variance leads to overfitting, where the model becomes too sensitive to the noise in the
training data rather than learning the true underlying patterns. The total error of a model can be decomposed
into three parts:

Error = Bias? 4 Variance + Irreducible Error

where irreducible error represents the noise inherent in the problem that no model can eliminate. The tradeoff
emerges because these components are inversely related: as you decrease one, you typically increase the other.
Simple models tend to have high bias but low variance, making consistent but potentially oversimplified
predictions. Complex models are the opposite, capturing subtle patterns but risking learning noise. Finding
the sweet spot between these extremes often determines the success of a machine learning model.

3.2 Cross-validation

Cross-validation ensures models are developed in a way that properly manages the bias-variance tradeoff,
and helps us understand how our model will perform on data it hasn’t seen before. The main idea behind
cross-validation is simple: divide your dataset into multiple parts and use different portions for training and
testing. This process provides a more robust estimate of model performance than a single train-test split.

There are several common approaches for implementing cross-validation:

Holdout Validation is the simplest method, where data is divided into training and test sets, typically
with 50-80% allocated for training and the remainder for testing. Although straightforward to implement, this
approach can be wasteful of data and may provide unstable estimates if the split happens to be unrepresentative.

K-fold Cross-validation is a more sophisticated solution dividing data into k equal segments, often 5 or
10. The model trains k times, using a different fold as the test set each iteration, while the remaining folds
serve as training data. The results are averaged across all iterations, giving a mean performance metric and
its variance. This approach can be especially valuable when working with limited data.

Leave-one-out Cross-validation (LOOCYV) takes this concept to its logical extreme. The model
trains on all but one data point and tests on the "held-out" point, repeating for the whole dataset. While this
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provides nearly unbiased estimates of model performance, it is computationally expensive with large datasets.

Stratified Cross-validation has each fold maintain the same distribution of target variables. This
is helpful when dealing with imbalanced datasets, where some outcomes are much rarer than others. For
instance, in a disease detection model where positive cases are uncommon, stratification guarantees that each
fold contains a representative proportion of positive cases.

3.3 Regularization

Regularization helps defend against overfitting in machine learning models. It works by adding penalties
to the model’s loss function that discourage unnecessary complexity. The two most common forms are L1
(Lasso) and L2 (Ridge) regularization. Each adds a different type of penalty term to the loss function:

Regularized Loss Functions:

L1 (Lasso): L = Loss+ A Z |w;]
i=1

L2 (Ridge): L =Loss+ A ) w}

i=1

where A controls regularization strength and w; represents model weights

L1 regularization tends to produce sparse solutions by forcing some weights to exactly zero, effectively
performing feature selection. L2 regularization keeps all features but shrinks their importance uniformly,
preventing any single feature from dominating the model.

The Elastic Net combines both approaches:

n n
L:Loss+)\12 |wi|+)\22wi2
i=1 i=1
Modern deep learning introduces additional regularization techniques like dropout (randomly deactivating
neurons during training) and early stopping (halting training before overfitting occurs).

3.4 Feature Engineering

Feature engineering transforms raw data into formats that machine learning models can better utilize.
While a dataset might contain valuable information, how that information is represented often matters as
much as the information itself.

A feature transformation is a term encompassing a number of approaches. Temporal transformations
focus on converting timestamps into more meaningful representations, such as cyclical features and extracting
time-based patterns like weekday/weekend distinctions or seasonal variations. Numerical transformations
involve techniques like scaling and normalization, applying log transformations to handle skewed data, and
binning continuous variables into discrete categories when appropriate.

Categorical transformations play an equally important role, employing methods such as one-hot encod-
ing, label encoding, and feature hashing to convert categorical data into formats that models can process
effectively. Interaction features add another layer of sophistication by combining multiple features, cre-
ating meaningful ratios, and generating polynomial features to capture more complex relationships in the data.

External data enrichment provides another powerful avenue for feature enhancement. This might
involve incorporating data from public datasets, APIs, or other external sources to provide additional context
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to your model. The idea is to add new features relevant to your core problem while avoiding unnecessary
complexity.

3.5 Curse of Dimensionality

The curse of dimensionality refers to the challenges that arise when working with high-dimensional data. As
the number of dimensions increases, the volume of the space increases so rapidly that available data becomes
sparse.

This phenomenon has several important consequences. Data sparsity increases exponentially with dimensions.
Distance metrics become less meaningful. Required sample size grows exponentially. And computational
complexity increases significantly.

To combat these challenges, we can use dimensionality reduction techniques like PCA (Principal Compo-
nent Analysis) or t-SNE (t-Distributed Stochastic Neighbor Embedding) before training our models.

3.6 Natural Language Processing

Natural Language Processing (NLP) interprets and predicts text data. The fundamental unit is the
token, created through tokenization which breaks text into smaller units. While word-level splitting might
seem intuitive, language complexities necessitate sophisticated approaches.

Input Text: "Don’t go to work!"

Tokenization

Do n’t go to work !

Figure 6: Tokenization process including handling of contractions

Tokenization challenges include handling contractions (e.g., "don’t" — "do" + "n’t"), managing punctua-
tion and special characters, and processing URLs and special cases.

Modern approaches favor subword tokenization, balancing word and character-level analysis. Training
data comprises vast collections of human-written text from web scrapes, Wikipedia, books, and various
sources. These sequences undergo embedding into vector spaces for processing. Each token in the result is
typically represented by a vector for modern machine learning models like language models.

These concepts, from cross-validation to regularization, form the backbone of machine learning. Under-
standing them deeply helps practitioners make effective decisions about model development and deployment.
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4 Classical ML Algorithms

ACHINE learning algorithms can be divided into three main categories: supervised, unsupervised, and
M reinforcement learning. Supervised learning works with labeled data to predict specific outcomes,
whereas unsupervised learning operates on unlabeled data to discover inherent patterns. Reinforcement
learning differs from both, learning through interaction with an environment and receiving feedback (rewards
or penalties). Supervised learning can be thought of as having a teacher giving out the answers, unsupervised
learning must discover the answers, and reinforcement learning learns through trial and error. The following
algorithms, though simpler than modern neural networks, remain incredibly powerful.

4.1 Supervised Learning

4.1.1 Linear and Logistic Regression

Linear regression is the most straightforward form of supervised learning. The algorithm fits a line through
data points by minimizing the distance between each point and its corresponding position on the line. This
reveals relationships between variables and predicts outcomes, though note that significant outliers can
substantially impact the model’s performance. The formula is y = mxz + b where m is the slope (rate of
change) and b is the y-intercept. Logistic regression follows a similar process but fits data to a sigmoid
function instead of a straight line.

/ y=mzx+b
Regression line

x

Figure 7: Linear Regression: Will find the best-fitting line by minimizing the sum of squared errors (distances)
between predicted values and actual data points

Ply=1)

K(y = 1) = =
Decision Boundary

®- X

Class 0

Figure 8: Logistic Regression: Will map input features to binary outcomes using a sigmoid function. The
curve represents the probability of belonging to class 1, with values above 0.5 classified as class 1
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4.1.2 Support Vector Machines

Support Vector Machines (SVMs) excel at finding optimal boundaries, called hyperplanes, between
distinct classes in your dataset. Their true power lies in the "kernel trick", which projects data into higher
dimensions where linear separation becomes possible, without actually computing the higher-dimensional
coordinates. However, this can be costly typically scaling quadratically with the number of data points.

Z2

Support Vectors ~~._

Optimal Hyperplane

Class 1 *

Figure 9: Support Vector Machine: Will find the optimal hyperplane with maximum margin between classes.
Support vectors (circled in red) are the critical points that define the boundary

Tg b2
\.
L
L]
Kernel trick o°
é °
o | e o°
/@ e \
1 } 1 1
\ ° ° /
[N 1 7
Original 2D Space Transformed Higher-Dimensional Space

Figure 10: The Kernel Trick: SVM transforms data from a space where classes are not linearly separable
(left) to a higher-dimensional feature space where they become linearly separable (right)

4.1.3 Decision Trees

A decision tree creates a branching structure where each node represents a decision point testing a specific
feature. The tree splits into multiple paths based on these decisions, eventually reaching leaf nodes that
provide predictions. Their strength is interpretability; you can trace how the model came to its conclusion.

’No‘ ’Yes‘ ’No‘ ’Yes‘

Figure 11: Decision Tree Structure
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4.1.4 Random Forests

Random Forests address the overfitting tendencies of individual decision trees through ensemble learning.
By creating multiple trees trained on random subsets of data, then aggregating their predictions, Random
Forests achieve more robust and generalizable performance. This approach proves particularly valuable in
scenarios with limited data availability.

2

Tree 1 Tree 2 Tree 3 ° ° °

Figure 12: Random Forest: Left side portrays individual decision trees trained on different data subsets, right
side shows the combined ensemble model with a smoother, more robust decision boundary (in red) compared
to individual tree boundaries (dashed lines)

4.1.5 Gradient Boosting

While Random Forests build trees in parallel, Gradient Boosting constructs them sequentially. Each new
tree focuses on correcting the errors of its predecessors. The process involves two critical hyperparameters:

1. Learning rate, which controls the contribution weight of each new tree
2. Number of boosting rounds, which determines the total number of sequential models

This technique particularly shines in scenarios where the data relationships are complex but deep learning
would be excessive.

Step 1: Initial Model Step 2: Errors Step 3: Combined Model

Figure 13: Gradient Boosting: Sequential improvement through error correction where the first model makes
initial predictions, the next focuses on the errors, and they combine to create a better fit
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4.2 Unsupervised Learning

4.2.1 Clustering

Clustering represents a fundamental approach to discovering natural groupings within data. One widely used
clustering algorithm, K-means, follows an elegantly simple process:

Kmeans Process:

1. Initialize K random centroids

2. Assign each datapoint to its nearest centroid

3. Recalculate centroids as the mean of their assigned points

4. Repeat steps 2-3 until convergence or reaching maximum iterations

xro Zo Xro To
l 1
| |
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° ! ° ! * C3
I | :
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Step 1: Initialize centroids Step 2: Assign to clusters Step 3: Recalculate centroids Step 4: Converged clusters

Figure 14: K-means Clustering Visualized

An enhanced version, K-means—+-, improves initialization by strategically selecting starting centroids
from the dataset, often leading to better final results. Hierarchical clustering offers another approach,
organizing data into a tree-like structure of nested clusters. This method has two variants: Agglomerative
(bottom-up), which starts with individual points and merges similar clusters, and Divisive (top-down), which
begins with one cluster and divides recursively.

4.2.2 Dimensionality Reduction

Principal Component Analysis (PCA) is a primary dimensionality reduction technique. At its heart,
PCA searches for the most informative angles from which to view your data by finding directions (princi-
pal components) along which data varies most significantly. Imagine viewing a shadow cast by a complex
3D object—PCA finds the most informative angle, preserving key features while simplifying the representation.

Example: Computing PCA
Counsider three vectors: [2 1], [4 3], [6 5]

. Center data by subtracting mean vector [4 3]: [-2 -2], [0 0], [2 2]
. Compute covariance matrix: [4 4; 4 4]
. Find eigenvalues: A\ =8, Ay =0

. First principal direction: v; = [%7 %]T

Tt o W N

. Data points projected onto the 1st principal component direction: [—2+/2,0,2+/2]

This reduces the data to a single dimension without loss of information.
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Consider analyzing thousands of face images. Each image might contain millions of pixels (dimensions), but
PCA often reveals that most meaningful variation can be captured by just a few hundred components—perhaps
corresponding to features like face shape, eye position, or smile width.

To To PC: 2
| PCy
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|
|
: T T1 PCy

Original data Find principal components Reduced data (1D projection)

Figure 15: PCA Visualized

In real-world applications, each direction typically accounts for some proportion of overall variance.
Practitioners must balance model simplicity (fewer dimensions) against preserving variance (retaining original
information). PCA has limitations, primarily its linear nature—it assumes meaningful patterns can be
captured by straight lines and flat planes.

For complex, nonlinear patterns, you can turn to more sophisticated techniques. t-SNE (t-Distributed
Stochastic Neighbor Embedding) excels at preserving local structure, making it particularly effective at
revealing clusters and patterns that PCA might miss.
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High-dimensional data Compute pairwise similarities Low-dimensional embedding

Figure 16: t-SNE Visualized

UMAP (Uniform Manifold Approzimation and Projection) offers similar capabilities to t-SNE but with
better preservation of global structure and significantly faster computation time. It’s particularly valuable for
large-scale datasets where both efficiency and accuracy matter.

Each technique serves different purposes: PCA is great for interpretable components and variance preser-
vation, t-SNE excels at visualization and local patterns, and UMAP balances these approaches while scaling
effectively. In practice, dimensionality reduction often serves as a crucial pre-processing step in machine
learning pipelines, helping reduce noise, speed up computation, and make patterns more visible to both
humans and algorithms.
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Figure 17: UMAP Visualized

Together, these supervised and unsupervised techniques are foundational parts of the ML ecosystem that
you may return to or reference.

4.3 Reinforcement Learning

Reinforcement Learning (RL) is about teaching AI to make sequential decisions. RL deals with an agent,
essentially an Al-powered decision maker. This agent operates in an environment, where at each state, the
agent takes an action which moves it to the next state. Throughout this process of navigating an environment,
the agent experiences feedback, which is a positive reward when the agent does what we want and a negative
penalty when it doesn’t.

Many RL problems are formalized as Markov Decision Processes (MDPs), which means that the next
state depends only on the current state and action, not on the history of previous states. However, not all RL
algorithms are limited to the Markovian assumption, as some consider sequences of past states and actions.

State s;41

Action a; )
Environment

Reward r;

Figure 18: RL Visualized: An agent takes actions in an environment, returning a new state and reward signal

There are two main approaches to solving RL problems. Value-based methods attempt to learn how
"good" different states or actions are by estimating their future rewards. Policy-based methods, by contrast,
directly learn a mapping from states to actions, typically by learning which actions are most likely to succeed
in different situations.

Of course, if these policies are not carefully designed, agents might find undesirable ways to obtain a reward,
a phenomenon known as reward hacking. The process of converting qualitative goals into quantitative

policy functions is known as the specification problem.

Another big challenge in RL is exploration versus exploitation, which is similar conceptually to how we
used these terms when describing optimization. Exploitation means taking actions known to yield high
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rewards based on current knowledge, while exploration involves trying new actions on the chance that it
results in discovering better strategies. Balancing these competing needs is important for effective learning.

Deep reinforcement learning methods have been the workhorse behind many recent breakthroughs,
such as mastering Go and building autonomous robots. The resurgence of the technique also brought
about Reinforcement Learning from Human Feedback (RLHF), where models are fine-tuned using human
preferences as rewards. RLHF is the reason large language models like GPT output results that satisfy user
queries as well as do—they’re literally optimized based on millions of human interactions.

4.3.1 Q-Learning

With Q-learning, the RL agent maintains a "Q-table"—essentially a lookup table that stores the expected
reward for each possible action in each possible state. "Q" just refers to the quality of an action in a given state.

When the agent takes an action and receives feedback, it updates its Q-table using:
Q(st,at) < Q(st,at) + [Tt + “YmgXQ(StH, a) — Q(Stvat)] (1)

where « is the learning rate, v is the discount factor, r; is the immediate reward, s; is the current state,
as is the action taken, and s;;1 is the next state.

Essentially, we update the old estimate by adding a portion of the difference between the old estimate
and the new improved estimate. The new estimate combines the immediate reward and maximum expected
(optimal) future reward.

Example: Q-learning in a 3x3 Grid Environment

Consider a 3x3 grid where an agent must navigate from start (S) to goal (G):

1. Initially, the agent has no clue which actions are good (all Q-values are zero)

2. Through exploration, it attempts different paths and receives rewards

3. After many iterations, the agent builds a map of values for every action in each position
4. Eventually, the highest value actions trace the optimal path from start to goal

e.g., at position [1,1], moving right becomes strongly preferred over moving down because the rightward
path leads more efficiently to the goal.

—:0.7 —:1.2

Figure 19: Q-learning Visualized: Blue arrows are optimal path from always choosing the highest-value action
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4.3.2 Actor-Critic Methods

Actor-Critic methods combine ideal aspects of value-based methods (like Q-learning) and policy-based
approaches. As the name suggests, these methods use two primary components:

1. The Critic evaluates actions by learning a value function (like with Q-learning)
2. The Actor determines which actions to take by learning a policy:

State

Critic

Reward

Environment

Figure 20: Actor-Critic Architecture Visualized: Actor selects actions based on current state, while critic
evaluates those actions and provides feedback to improve actor’s policy

The critic evaluates the actor’s decisions, providing feedback on how "good" or "bad" any given action
was. Using such feedback, the actor can continuously improve its policy.

Modern RL systems often implement these algorithms using neural networks instead of tables, allowing
them to handle complex environments with vast state spaces, such as robotics and autonomous vehicles.
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5 Neural Networks

EURAL networks were initially inspired by the structure of neurons (nerve cells) in the human brain.

While the function of each individual neuron is quite limited, the emergent complexity that comes from
combining millions and billions of neurons is remarkable, allowing us to run prediction, classification, or
generation tasks. Let’s start small:

5.1 Feedforward Neural Networks

5.1.1 Perceptrons

Perceptrons are the most basic building blocks of neural networks, which implement a linear decision
boundary that separates data points into binary classes. Given some starting weights and biases, they
iteratively update their weights by minimizing prediction errors to produce an output for any given input.

Mathematically, perceptrons perform a weighted sum of inputs followed by an activation function. More
simply, they are a series of matrix multiplications with a non-linearity applied to the output.

Perceptron Algorithm:
1. Initialize weights w and bias b randomly
2. For each training example:

(a) Calculate predicted output: g = activation(w - = + b)

)
(b) Compute error: error = target — ¢
(¢) Update weights: w = w + « - error -
)

(d) Update bias: b = b+ « - error

3. Repeat until error is minimized or maximum iterations reached

The learning rate a controls how quickly weights are adjusted. The algorithm converges when the
perceptron correctly classifies all training examples or reaches an acceptable error threshold.

W1
b
T @
w

Figure 21: Basic Perceptron. The perceptron computes the activation f(wix; + wexs + wsxs + b) to find y
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A multi-layer perceptron, or MLP, consists of multiple layers of interconnected neurons. Unlike a
single perceptron, however, MLPs allow the network as a whole to learn and represent complex, nonlinear
relationships in data.

Figure 22: Multi-Layer Perceptron (MLP) showcasing an input layer, a hidden layer, and an output layer.
Each connection represents the passing of information through non-linear transformations across layers,
enabling the network to learn complex patterns

5.1.2 Activation Functions

Perceptrons are powerful, but they come with a large limitation: since they are themselves linear functions,
combining several of them still yields a linear function. This is best demonstrated through the famous "XOR
(exclusive or)" example, where we cannot split the data with a linear decision boundary.

T2
N (1,1) > 0 No single linear decision
0,1) — 1gn @ boundary can separate the
N XOR classes

(0,0) :O’ ‘(\1, 01

Figure 23: The XOR Problem Visualized: A classic example of linear non-separability. Points diagonally
opposite must belong to the same class, making it impossible to separate with a single straight line

As such, we need a tool that introduces nonlinearities into the mix, such that decision boundaries can
take on complex curved shapes (instead of simply being lines). Enter Activation functions: nonlinearities
that enable a neural network to learn more complex transformations. A deep network of purely linear layers
collapses into a single linear transformation, making it impossible to learn complex patterns or relationships
in data. One of the most commonly used activation functions is ReLU, or Rectified Linear Unit. ReLU
retains the value if positive and converts a given input to 0 if negative. It can be written as f(z) = max(0, x).

This helps address the vanishing gradient problem, where gradients become extremely small as they
flow backward through deep networks, rendering learning in earlier layers ineffective. With ReLU, the
gradient stays 1 for positive values, enabling sparse activation where many neurons output 0. This reduces
superposition, when neurons represent multiple concepts. Sparsity is similar to biology, where neurons have
threshold activation.
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Other common activation functions include Sigmoid, which maps values to the Sigmoid function

(o(x) =1/(1+€77))

and outputs between 0 and 1, which is ideal for binary classification. Another, Tanh (the hyperbolic tangent),
outputs between -1 and 1 when zero-centered outputs are ideal, such as with time series or signal processing.

Modern models have introduced variants of these functions. The GELU (Gaussian Error Linear Unit)
incorporates probabilistic element into the ReLLU, while the SwiGLU introduces gating mechanisms for
information flow control (we discuss gates later the GRU section).

ReLU Sigmoid
() = max(0,2) o(e) = s
f(x) o(x)
> T > T

Figure 24: Activation Functions: ReLU and Sigmoid. The ReLU function returns f(x) = max(0,z), while

Sigmoid is plotted as o(z) = H% (scaled by 3 here so that it fills the same axis size as the ReLU)

5.1.3 Backpropagation

Backpropagation is a mechanism that enables neural networks to “learn” by updating their weights to
reduce errors. During the training process, a model is given some input and tasked with making some
prediction about it, be it classification or regression. This output is compared with the ground truth, or the
output we actually know to be correct (e.g., an image is actually a hot dog). This is known as the forward pass.

The network calculates the error between prediction and truth, then updates its weights based on their
contribution to incorrect probabilities. This process propagates backward through layers, with each neuron
receiving updates based on its contribution to the final error. Through iteration across the training corpus,
the model gradually improves its predictions. After comparing its output to the ground truth, the model then
propagates that information backwards through the network (hence backpropagation). In order to do this
effectively, the network first computes how much each neuron contributed to the error in the final prediction.

For example, say we’re predicting the probability of an image being a certain number. Suppose the
model makes the following prediction, with each entry representing the probability of the image being the
corresponding digit index (i.e. 0.01 probability the digit is 0, 0.05 probability the digit is 1, 0.04 probability the
digit is 2, etc). This can be encoded in the following vector: [0.01, 0.05, 0.4, 0.1, 0.15, 0.08, 0.02, 0.12, 0.05, 0.02]

Suppose the digit is actually a 2, that as the ground truth is represented as: [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Backpropagation begins by calculating the error, or difference between prediction and truth, for each

neuron. Each weight is then updated based on how much it contributed to these incorrect probabilities,
strengthening connections that would push the "2" output higher and weakening those activating other digits.
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This same process is then applied to the previous layer, using the final layer as the new “ground truth”.
Weights that properly predicted values in the final layer are pushed up, and those that did not are pushed
down. When this process is applied recursively, every neuron receives a weight update. By iteratively applying
this process across a large training corpus, and having the network “learn” from each labeled example, the
model improves its predictions to better resemble what it has seen during training.

ANK AR
VR
} 1
TN
Az 1
<~ 1
AN
\:\/\ !
oo !
1
N NN
! 7
1
1
1 7
f ’
' ’
’
I, ’
@I

7

N

AN AARN,7
\ \I\L
(AT

A\l

"

1

1 \s
1o LY
1

‘E/
\

Figure 25: Visualization of the backwards "flow" in backpropagation in an MLP

5.2 Convolutional Neural Networks (CNNs)

5.2.1 Convolutions

As established earlier, a convolution is another type of operation that can be performed on matrices. In
short, a convolutional layer uses learned filters to detect patterns in the input, such as edges, textures, or
more complex features depending on the layer depth. They are commonly used in computer vision tasks that
involve images. These filters slide across the image spatially using small windows such as 3x3 or 5x5 pixels.

Feat Map 1
Input Image cattre ap

3x3 Filter 1

/

33 Filter 2

7

Feature Map 2

Figure 26: Convolutions in CNNs. Two distinct 3x3 filter windows (red and blue) slide over a 5x5 input
image to produce two feature maps (representing detected features in the input). The red filter’s arrow
(shifted 1 unit up) leads to Feature Map 1, while the blue filter (shifted 1 unit down) creates Feature Map 2
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5.2.2 Pooling Layers

Pooling layers are a type of nonlinearity that allow for dimensionality reduction in image-intensive tasks.

There are two main types of pooling layers, mean pool and max pool, and they do basically exactly
what you’'d expect. Mean/average pooling layers find the average over a section of a matrix and that value
represents that section. Max pooling layers find and use the maximum value.

Both reduce the spatial dimensions of the data which help reduce computation, provide some spatial
invariance (slight shifts in features don’t matter—an object can be detected anywhere in an image), and
prevent overfitting. They are commonly used to simplify data for edge detection and image recognition tasks.

To compute max-pooling, divide a matrix into small non-overlapping squares and then take a window

(such as 2x2) and retain only the maximum value. Mean-pooling is a similar process but rather takes the
average of the values in that section.

Input Feature Map

Max Pooled Output

Max Pool

Figure 27: Example 2x2 Max Pooling operation

Max pooling layers are typically placed after convolutional layers in a CNN for multiple successive
convolutional and pooling layers, allowing the network to learn a hierarchy of features.

5.2.3 Modern Architectures

As neural networks became deeper, researchers encountered a paradox: sometimes adding more layers made
performance worse, even though a deeper network should theoretically be able to learn everything a shallower
network could. Researchers began experimenting with novel architectures that could more effectively pass
information in ever increasingly deep networks.

One such breakthrough came with Residual Networks, commonly referred to as ResNet. The architecture
introduced "skip connections”, or shortcuts, in the neural network that allow information to bypass layers.
Instead of learning the full transformation across each layer, these networks learn the residual, or the difference
between the input and desired output. As such, the final model utilizes only layers that are overall helpful to
model performance—and skips those that are not.

This was further enhanced through DenseNet, an architecture featuring connections from each layer to

every other layer in a feed-forward fashion. Residual connections have outlived their origins with simple
CNNs, and have largely become standard in many modern deep learning implementations.
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Traditional Network ResNet Architecture

Input Layer Input Layer
Hidden Layer 1 Hidden Layer 1 )
Hidden Layer 2 Hidden Layer 2) — Standard
l l / —  Skip
Output Layer Output Layer

Figure 28: ResNet Architecture with Skip Connections

5.2.4 Softmax

Ultimately, classification networks output class likelihood, which is represented internally as probabilities for
each class. To do this, we need a mechanism for converting raw final scores, such as -2.4, 0.5, and 1.7, into
associated probabilities (that sum to one). So, we employ the softmax mechanism, which simply maps these
raw scores to probabilities as desired.

Mathematically, this is achieved through the following formula:
exp(z;)
plzi) = =
VX exn(z)
Because of the exponential in this formula, even small differences in raw outputs correspond to meaningful
separation within probabilities—which is exactly the behavior we want.

Raw Scores Probabilities
—2.4 Softmax 0.01
—_—

0.5 0.23
1.7 0.76

S =1.0

Figure 29: Example of Softmax converting raw scores into a probability distribution

5.3 Recurrent Neural Networks (RNNs)

While convolutional neural networks represented a breakthrough in generative modeling, they struggled with
contextualizing long-range relationships between data during the generation process.

Recurrent Neural Networks offer the first steps at a solution, and are architectures that maintain an
internal state which keeps track of sequential inputs.
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Mathematically, an RNN can be described by:

h; = tanh(Wh;—1 + W,x; + b) (2)

Where h; is the current hidden state, h;_; is the previous hidden state, x; is the current input, Wy and
W, are weight matrices, and b is a bias term.

The main challenge these models face is maintaining cohesive context when generating large amounts of
text. As such, they can be repetitive and worse yet spiral into nonsensical ideas. This phenomenon is dubbed
the vanishing gradient problem (since it stems from gradients shrinking over long backpropagation), and
has proved a serious limitation for tasks like text generation, where generating cogent narratives and solving
problems logically can be challenging.

5.3.1 LSTM

Enter Long Short-Term Memory (LSTM) networks, a type of recurrent neural network that retains long
term information through a series of "gates", which are themselves neural networks that learn what previous
information to discard vs. what to keep.

Each LSTM cell maintains two internal states that function as the network’s 'memory’: the long-term cell
state and the current hidden state, which together inform future outputs. These memory-like states allow
LSTMs to learn dependencies over hundreds of time steps, since they provide direct pathways for gradients
to flow—essentially for the model to update—through time via the cell state.

5.3.2 GRU

Gated Recurrent Units (GRUs) were introduced as a further enhancement to LSTMs, and introduced a
more computationally efficient approach to achieve similar results. With shorter sequences, GRUs perform
nearly identically to LSTMs.

Rather than maintaining separate cell and hidden states, GRUs use a single hidden state and just two
gates: a reset gate and an update gate. The update gate determines how much of the previous state to retain,
while the reset gate controls how much of the previous state to use in computing the new candidate state. In
this way, the update gate combines the functionality of an LSTM’s forget and input gates.

LSTM Cell GRU Cell
e 0 ( R
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- Forget Input Output >y Reset Update
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Cell Update Candidate
& J . )

Figure 30: LSTM and GRU cell architectures. LSTM (left) uses both cell state (C;) and hidden state (h;)
with three gates: forget (f), input (i), and output (o). GRU (right) simplifies this with only hidden state (h;)
and two gates: reset (r) and update (z). Both architectures create pathways for long-term information flow
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5.4 Transformers

With the background of CNNs, LSTMs, and GRUs, the inception and rise of the Transformer architecture
feels more like a natural progression than some magical breakthrough out of left field. While each of these
sequential architectures represented a great leap in long range contextualization, LSTMs and GRUs still
struggle when dealing with properly utilizing prior information, either for logical deduction or meaningful
cohesion across lengthier stories.

In 2017, a team of Google researchers released the paper "Attention is All You Need", which outlined
an “attention” mechanism for capturing long-term context, and their proposed architecture, dubbed the
“Transformer”. Transformers have since become the foundation of many recent advances in Al, powering large
language models and image diffusion models.

5.4.1 Attention Mechanism

Fundamentally, attention allows a model to focus on relevant parts of its input when generating each part
of its output.

Recall that LSTMs must pass information sequentially through states. Attention, on the other hand,
creates direct connections between all token positions. When generating each word, the model can thus
directly "attend" to any previous word, weighing their relative importance.

Put more simply, rather than “deciding” which sections of the previous output to look at, a Transformer
is always looking at all previous parts of the output, and dynamically assigning “attention scores” to each
token or word to indicate how important that segment is.

This proved an enormous leap forward for generating meaningful language. For example, consider the
following sentences: "After studying the new drug’s effects on mice, the scientists found promising results.
However, they need more testing."

Here, the transformer must understand that "they" refers to the drugs (not the mice or scientists) and
that "testing" refers to drug trials (not academic exams). It does this by allowing "they" and "testing" to
attend to relevant earlier context like "scientists" and "drug’s effects," building a coherent understanding of
the narrative.

Attention from Query Token "sat"

— T

Jenny sat on the floor

“—/\/

Figure 31: The attention mechanism in Transformers visualized. The query token "they" (orange) interacts
with keys (the other tokens in purple)

5.4.2 Self-Attention

For each individual token, a transformer computes three vectors: a query (what it’s looking for), key (what
it matches against), and value (information it carries). These vectors essentially encode information about
the role of that token in the sentence, and are used to calculate the aforementioned “attention scores” that
dictate how much emphasis is placed on surrounding pieces of context.

35



For each position, the dot product of its query vector with all positions’ key vectors produces attention
scores. After softmax normalization, these scores weight the value vectors to produce the final attended
representation. These dot products represent compatibility scores—i.e how relevant each context token is to
the current token being processed. The formula for this operation is:

Attention(Q, K, V') = softmax < > V
? i
\/3

where we divide by v/d to normalize the size of the dot products (and prevent them from exploding).

An important note: there is nothing incredibly special about the way these three vectors are initialized.
The real breakthrough in this approach lies in the fact that over time, these vectors start to encode meaningful
information (as the model is trained), and because they represent the entire sequence length, they can
meaningfully encode these long-range dependencies.

Again, this is best conceptualized through an example. Consider the sentence "The mouse wanted the
cookie because it was hungry." When processing "it", self-attention helps determine the referent by computing
attention scores with previous words. The model might assign high attention weights to "mouse" and
"hungry," understanding that the mouse, not the cookie, was the hungry one.

Transformers use two primary attention patterns. Bidirectional attention lets each token attend to all
other tokens in the sequence, allowing for rich, complete contextualization.

Causal or masked attention restricts each token to only attend to previous tokens in the sequence. This
prevents the model from peeking ahead at the future tokens it is trying to predict. These patterns are
typically used in different transformer architectures: bidirectional attention in encoder models focused on
understanding (like BERT), and causal attention in decoder models designed for generation (like GPT), with
encoder-decoder models using both patterns. More on these in the following section...

5.4.3 Transformer Architectures

There are three primary forms of transformer models. Encoder-only models use the aforementioned bidirec-
tional attention to build representations of input text. As such, they are strong at tasks like classification
that benefit from looking at all the context collectively.

Decoder-only models, on the other hand, use causal attention to generate text autoregressively. They
thus excel at generation tasks. A third architecture, Encoder-decoder, combines both components, and is
strong for tasks that require transforming one sequence of data into another one—such as translation.

5.4.4 Multi-head Attention

Multi-head attention allows transformers to run multiple self-attention operations in parallel, each with its
own learned query, key, and value matrices. This allows the model to capture different types of relationships
simultaneously. The formula extends our previous self-attention:

MultiHead(Q, K, V) = Concat(head;, . .., head; )W

where
head; = Attention(QW 2, KW, viv))

In practice, each attention head learns different relationships within the data, which is why assembling
them in a single model is extraordinarily powerful. In text generation, one attention head may learn temporal
relationships, while another captures grammatical relations, and a third understands possession.

Transformers are powerful, but they can be VERY computationally expensive. Since every token attends
to every other token, transformers scale quadratically.
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5.4.5 Modern Transformer Optimizations and Variants

To alleviate the quadratic computational complexity that comes with full attention architectures, linear
attention transformer variants approximate attention in O(n) time.

One method for this is KV caching. This builds off a pretty neat realization: that previously generated
tokens’ key and value vectors remain constant when generating new tokens. By caching these values—rather
than recalculating them with every additional token—models achieve linear time complexity with long
sequence lengths.

Transformers can also be extended to image inputs through Vision Transformers, which tokenize patches
of images and run attention on them. Compared to earlier vision models, vision transformers are strong at
capturing hierarchical relationships, which is critical to contextualizing an entire scene.

There are also Mixture of Experts models, which build specialized "experts" that route tokens to
different mini models based on the token’s content. Improving these variants is an active research area.

Together, these architectures represent a meaningful way in which ML systems have been improved over

time for specific tasks. From the basic perceptron to the techniques powering Large Language Models such as
ChatGPT, neural network architectures are a major way that we address computational constraints.
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6 Training & Evaluation

RAINING and evaluation are components of a feedback loop through which ML models learn from data and
demonstrate their effectiveness. These processes rely on error functions to guide parameter optimization,
alongside metrics to objectively measure model performance.

While the mechanics of machine learning are somewhat different from those of biological learning, the
core idea is fundamentally the same. Given thousands (or millions) of observations, learning involves finding
underlying patterns and understanding which behavior is advantageous—and which is not. This is a process
we refer to as training in machine learning.

Mathematically, this is formalized through error (or loss) functions, which are a major topic in this section.
Once we’ve trained a model, there are several ways to evaluate its effectiveness, which we also discuss.

6.1 Data Preprocessing

Raw data requires significant preparation before model training. Data preprocessing involves transforming
raw data into a suitable format for ML algorithms. This involves handling missing values, which can either
be extrapolated or ignored, as well as scaling different modalities of data to prevent overemphasizing certain
features. For example, if some class of data is underrepresented in a training set, you can increase the number
of samples you draw from that class during the training process. One way to accomplish this is the Synthetic
Minority Over-sampling Technique (SMOTE), which upscales data with a minimized risk of overfitting.

General practice is to use the most "high-quality" data from our training set, which in practice involves
removing noisy samples and corrupted entries. This can be done at scale with automated quality scoring
techniques.

Another issue is deduplication. At a small scale, this can be trivial, but with larger datasets it quickly
grows computationally infeasible. Several techniques such as locality-sensitive hashing, embedding-based
similarity detection, and distributed processing frameworks have been developed to address this, but it
remains a challenge. Especially important is ensuring there is no data leakage—or shared entries—between
the training set and the test set.

You can also choose how to handle outliers in a dataset, as well as how to encode the data (as mentioned
before with embedding models). In some cases, large models can compensate for poor choices in the data
processing pipeline (i.e., a model can learn to ignore outliers), but typically these decisions dictate much of
the later development process: from cost to time to output quality.

Finally, human annotation collection yields labeled data in otherwise unsupervised learning contexts.
Checking that these annotations are correct typically involves building robust and consistent instruction
frameworks for those labeling the data. Even a small amount of mislabeled data can be crippling for frontier
models, since the quality of the dataset helps dictate the upper bound for how well a model can perform.

6.2 Model Compression

Model compression techniques reduce model size and computational requirements while maintaining
performance. One relatively straightforward way to do this is through Quantization, which involves reducing
the numerical precision with which you store weight and activation values. For example, reducing the standard
representation of 32 bit floating-point numbers down to less precise 8 bit data types can dramatically improve
model training and inference speed, since the hardware bottlenecks are eased. This approach has been
extraordinarily successful, often only minimally reducing performance.
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Figure 32: Quantization Visualized: Reducing a 32-bit floating point representation to an 8-bit integer
representation to achieve lower memory usage and faster computation

Quantization focuses on reduced precision for inference; mixed precision training, on the other hand,
leverages lower precision formats during the training process itself. These formats include BF16 (Brain
Floating Point) and FP8 formats, which use fewer bits than standard FP32. These techniques reduce memory
bottlenecks, but also increase risks for numerical stability (critical for model convergence). Regardless, they
are widely used as training modern ML models approaches the limitations of our current hardware.

Another technique here is pruning, where you systematically remove redundant or less important
parameters from a network, which prevents us from ending up with an over-parametrized model. Finally,
engineers can also implement knowledge distillation, which involves training a small, lightweight model to
mimic behavior of a larger one. Similarly, weight matrices can be broken down into their most important
low-dimensional components through Low-rank factorization.

6.3 Error Functions

In ML, the terms "loss" and "error" are often used interchangeably. A loss function quantifies how poorly a
model performs by measuring the difference between a model’s predicted outputs and actual desired values
for individual data points. The error function (or cost function) typically refers to the aggregate loss
across the entire dataset, usually calculated as the average of all individual loss values. These are important
for both training (by providing gradients for optimization) and evaluation (by measuring model performance).

Loss/error functions differ depending on the problem type, primarily falling into two categories: classifi-
cation functions (for predicting probabilities for classes or labels of data) and regression functions (for
predicting continuous numeric values).

6.3.1 Regression Tasks
Mean Squared Error (MSE):

n

1
MSE = ﬁ Zl(ytrue - ypred)2
-
MSE calculates the average of squared differences between predicted and actual values. Its smooth quadratic
(U-shaped) curve means it provides stable gradients during optimization and penalizes large errors much
more heavily than small ones. We often use MSE when outlier detection is important or when large errors
are particularly undesirable, and when working with data where the scale of errors matters.

Mean Absolute Error (MAE):

1 n
MAE = E Zl |ytrue - ypred|
i=

MAE measures the average absolute difference between predicted and actual values. MAE has a V-shaped
linear curve which treats all error magnitudes proportionally—a mistake twice as large receives double the
penalty. Thus, MAE is more robust to outliers compared to MSE, and we can use it when we want a model
to be less sensitive to occasional large errors.
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6.3.2 Classification Tasks

Binary Cross-Entropy:
BCE = — )y, log(i);) + (1 — y:) log(1 — §)

BCE measures the performance of a classification model whose output is a probability value between 0 and 1.
The logarithmic curves approach infinity at the extremes, so when a model is completely confident but wrong,
the penalty is extremely severe. For positive examples (y=1), BCE penalizes low probability predictions; for
negative examples (y=0), it penalizes high probability predictions.

Hinge Loss:

Hinge = max(0,1 —y - )
Hinge loss has a flat region (zero loss) for confident correct predictions and a linear penalty for incorrect
or insufficiently confident predictions. This creates a "margin" around the decision boundary, allowing the
model to find a classification boundary with maximum separation between classes. Unlike BCE, hinge loss
doesn’t penalize correct predictions beyond any threshold—it only cares about mistakes. So we often use it
for classifiers like Support Vector Machines, or when you need a clear wide decision boundary between classes.

Regression Loss Functions Classification Loss Functions
Loss Loss
MSE A 4 Hinge
o MAE — BCE (y=1)
— BCE (y=0)
Y-y > > 0

Figure 33: Loss Functions Visualized. Left: MSE penalizes large errors more heavily than MAE. Right: Hinge
loss creates a margin and BCE shows behavior for positive (blue) and negative (red) classes

6.4 FEvaluation Metrics

6.4.1 Regression Metrics

The following metrics quantify prediction errors in regression tasks:

Root Mean Squared Error (RMSE):

n
RMSE = % ;(ytrue - ypred)2
RMSE calculates the square root of the average squared differences between predicted and actual values
(or in other words, the square root of MSE). This allows RMSE to return error measurements in the same
units as the original data. Like MSE, RMSE is sensitive to outliers due to the squared term, penalizing large
errors disproportionately. We typically use RMSE when reporting errors in the original scale of the data is
important, and when larger errors should receive more weight in the evaluation.
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Figure 34: Regression Error Visualized: Data with vertical errors to the true model, demonstrating how
outliers affect RMSE more than MAE

Mean Absolute Percentage Error (MAPE):

MAPE = Ytrue — Ypred

100%
—

i=1 Ytrue
MAPE gives prediction accuracy as an average percentage error, making it scale-independent. By calculat-
ing the absolute percentage difference between actual and predicted values, MAPE allows for comparison
across different datasets with varying scales. Still, MAPE has some limitations—it’s undefined for actual
values of zero and can give misleading results for small actual values. We use MAPE when relative errors
are more important than absolute ones, and when comparing model performance across different scales or units.

R-squared (R?):
R2 =1— ZZI:% (ytrue - ypie(;)z
Zi:l(ytruc —7)

R? measures the proportion of variance in the dependent variable that’s explained by the model. It compares
the fitted model to a simple baseline that predicts the mean of the data. The value ranges from 0 to 1 (or
negative in the case of poor fit), with higher values describing better fit. A value of 0.7 means the model
explains 70% of the variance in the data. We use R? for a standardized measure of fit comparable across
different dependent variables, and to see how our model performs compared to simply predicting the mean.
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Figure 35: R? Visualized: The blue dashed lines show the total variance (the distances from data points
to the mean). Red dashed lines are the unexplained variance (the distances to the model prediction).

R?=1- Sﬁﬁf&:?{f;?;gffell‘;e;, calculating how much variance the model explains versus just predicting the

mean
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Adjusted R-squared:

P2\ (o
Adjusted R? = 1 — A-R)n-1)
n—p-—1

Adjusted R? modifies the standard R? to account for the number of "predictors" in the model. It penalizes
additional predictors that don’t add significant explanatory power, which resolves an issue where normal R?
increases (or stays the same) when more predictors are added.

This makes it useful for comparing models with different numbers of features. We can use this when
performing feature selection, as if adding a predictor causes Adjusted R? to decrease, that predictor likely
isn’t improving the model in a meaningful way.

6.4.2 Classification Metrics

For classification tasks, we can evaluate different aspects of model performance:

Accuracy:
True Positives + True Negatives

Accuracy =
acy Total Samples

Accuracy measures the proportion of correct predictions among all predictions made. It is a simple metric
that works for balanced datasets where all classes appear a similar number of times.

However, accuracy can be misleading with imbalanced datasets—a model predicting the majority class
for all inputs will have high accuracy but fail resoundingly on the minority class. For example, in a medical
diagnosis setting with 95% healthy patients, a model that predicts "healthy" for all patients will technically
achieve 95% accuracy.

Precision and Recall: .
True Positives

Precision =
True Positives + False Positives

Precision measures how many of the predicted positive instances are actually positive. Put simply, when the
model returns "yes," how often is that correct? High precision minimizes false positives, making it important
when false alarms are undesirable (e.g. spam detection, marking an important email as spam has consequences).

Recall = True Positives

True Positives + False Negatives

Recall (also referred to as sensitivity) measures how many of the actual positive instances the model
correctly identified—when the answer is "yes", how often does the model return that? High recall minimizes
false negatives, most important when missing positive cases is dangerous (e.g., cancer screening). These
metrics together describe different aspects of model performance that accuracy alone could conceal.

F1 Score:

Fl1—9 Precision - Recall

" Precision + Recall

F1 score is the harmonic mean of precision and recall, and gives a single metric balancing both. The
harmonic mean penalizes extreme values more than the arithmetic mean, meaning a model must perform
well on precision AND recall to achieve a high F1 score. This means F1 is valuable for imbalanced datasets
(addressing the problem we earlier noted with accuracy).
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Figure 36: Confusion Matrix: Green cells represent correct predictions, while red cells represent errors.
Precision is the reliability of positive predictions (rows), recall is the ability to find all positive cases (columns)

Receiver Operating Characteristic (ROC) Curve:

The ROC Curve plots True Positive Rate (TPR) against False Positive Rate (FPR) across classification
thresholds, helping to visualize the tradeoff between sensitivity and specificity. A perfect classifier’s curve goes
straight up and to the right. The Area Under Curve (AUC) measures overall performance: 1 is perfect
classification, while 0.5 suggests randomness. AUC is threshold-invariant and works well with imbalanced
datasets by considering each class independently. Mathematically, the area under the curve represents the
probability that a model will rank a random positive example higher than a random negative one.

True Positive Rate (TPR)
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Figure 37: ROC Curve Visualized: Plots True Positive Rate against False Positive Rate across different
threshold settings, where the diagonal line represents random classification. The AUC quantifies the overall

performance of the classifier, with higher values (closer to 1) meaning better performance
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6.5 Training Techniques

6.5.1 Optimization Algorithms

Optimization algorithms are the processes by which, through training and fine-tuning, models reach conver-
gence (the point where further iterations do not significantly change the parameters).

Stochastic Gradient Descent (SGD), previously discussed, is one of the most widely-used optimiza-
tion methods, continuously updating the weights and parameters through minimizing loss by moving in
the direction of the gradient. The update rule for SGD is the following: ;11 = 6; — aVyJ(0), where «
is the learning rate. This updates model parameters in the opposite direction of the gradient to minimize error.

The Adaptive Moment Estimation (Adam) optimizer incorporates ideas such as momentum (adding
inertia to the optimization process) and adaptive processes (resistance to the optimization process). It utilizes
the exponentially weighted average of the gradients to accelerate convergence. This all comes at a compute
cost; Adam requires two separate rolling statistics (first and second moments) for each parameter in the
model, which scales up with large models—especially ones using 16 bit precision (more on this in section 6.2).

Adam combines the benefits of two other extensions of SGD: AdaGrad, which maintains per-parameter
learning rates, and RMSProp, which adapts these rates based on recent gradients. Adam computes both
first-moment (mean) and second-moment (uncentered variance) estimates of the gradients:

my = fimy—1 + (1 — B1)VeJ(0) (First moment). This calculates a weighted moving average of gradients
to add momentum to the optimization direction.

vr = Bovs_1 + (1 — 32)(VaJ(0))? (Second moment). This is the exponentially weighted moving average of
squared gradients, capturing the variance, to adapt learning rates for each parameter.

These moments are bias-corrected (meaning they are adjusted to account for initial zero-value initialization
effects on parameter estimates), then used to update parameters:

a o~
Ory1 =0 — mmt

Here, 81 and (3, are decay rates often set to 0.9 and 0.999 respectively, and € is a small constant for
numerical stability. It updates parameters using the normalized gradient direction with adaptive step sizes.

Loss
%/ — SGD
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Figure 38: Optimization Algorithms Visualized: Left, path of SGD vs Adam on a loss surface. Right,
convergence rates illustrated showing how Adam can reach lower loss values more quickly than standard SGD

In practice, Adam has a few advantages. It is resilient to noisy gradients, it can navigate around saddle
points (non-maxima where the gradient is zero), and it supports automatically adjusting learning rates per
parameter. Still, SGD often generalizes better, due to its noisier updates providing built-in regularization.
The choice of optimizer depends on the scenario.
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6.5.2 Batch Normalization

It is common practice to normalize data (to zero mean and unit variance) before inputting it to a model.
Different features could have vastly different scales/ranges of values. In order to compare across features, you
independently find the mean and variance for each feature and then, for each feature value, subtract the mean
and divide by the standard deviation. This results in all feature values across features being on the same
scale and centered around 0. Normalization speeds up convergence by making the loss landscape more even.

Batch normalization extends this concept to hidden layers in deep networks. Essentially, after each
hidden layer, you have the same problem again where the outputs of one layer are no longer normalized. So,
we must normalize again after each activation—this is where batch normalization comes in. During training,
normalization is computed with respect to the current mini-batch of data (hence "batch" normalization),
requiring many examples to be processed simultaneously to calculate meaningful statistics.

Input —* Dense [ BN — ReLU P Output

Figure 39: Batch Norm in a NN layer sequence, between linear transformation and activation function
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Figure 40: Batch Normalization: Comparison of activation distributions where BN standardizes distribution

Unlike the input layer, batch normalization doesn’t have to be normalized around 0. It can be shifted (to
a different mean) and scaled (to a different variance), by multiplying the normalization values by a factor
gamma v and adding a factor beta 5. This is expressed mathematically as:

T — UB
R
\/op T €

where pp and 0% are batch statistics (up is mini-batch mean and 0% represents mini-batch variance).

BatchNorm(z) = +

This technique speeds up training by stabilizing the distribution of layer inputs and reducing internal
covariate shift. During inference or test time, batch norm layers use the empirical values which are running
averages of the mean and variance accumulated during training, ensuring consistent normalization.

Batch Normalization has historically been useful for training CNNs. With more modern architectures
(like Transformers), a similar technique called Layer Normalization is often implemented. Layer Norm
normalizes across the feature dimension for each individual example, which allows for variable sized batches.
Batch sizes typically differ between training and testing, a discrepancy normalizing by layer helps alleviate.

RMSNorm simplifies this further by normalizing only on the root mean square of activations (we skip
the mean centering step). This incrementally improves our compute, so its benefits scale with model size.
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6.5.3 Dropout

Dropout prevents overfitting by randomly deactivating neurons during training with probability p (typically
0.5). Each training sample uses a different dropout pattern, while inference uses all neurons with outputs
scaled by p. This approach has several benefits; it forces redundant feature learning, prevents neuron
co-adaptation, and it approximates ensemble learning within a single network. Mathematically, for each
neuron with output y, dropout applies:

L with probability p (training)
Y r-y with probability 1 — p (training)

Where r is a scaling factor, typically ﬁ, that maintains expected output magnitudes.

Figure 41: Dropout Visualized: During training, hidden nodes h; and hs may be randomly excluded from
backpropagation. During inference, all neurons are active as an ensemble of multiple "thinned" networks

Dropout’s ensemble impact comes from an exponential number of "thinned" networks (around 2" where
n is the number of neurons) sharing weights during training, collectively creating a regularization effect.

6.5.4 Learning Rate Scheduling

The learning rate 7 is a hyperparameter that determines how large of steps to take when updating weights
during optimization. Very low learning rates lead to slow model convergence, while high learning rates can
lead to overshooting optima and divergent behavior. That being said, it’s difficult to properly select an
appropriate learning rate from the get-go, and it’s actually often suboptimal to use the same learning rate
throughout the entire training process.

Learning rate scheduling addresses this by dynamically modifying the learning rate through the course of
the training process. Generally, schedules favor larger learning rates in earlier parts of training (where the
parameters are still far from an optimum), and shrinking learning rates as training progresses (which allows
better convergence).

The most straightforward way to implement this is through step decay, where the learning rate is reduced
by some factor at given (not necessarily constant) intervals. Alternatively, this decay can be exponential or
trigonometric for a smoother, and perhaps more rapid decrease. Many modern ML implementations also
integrate "warm-up", which involves gradually increasing the learning rate at the start of training before
applying other scheduling strategies.

Intuitively, this allows for our model to learn faster as it initially progresses towards an optimum, before
transitioning to smaller, more subtle changes to prevent overshooting. This balance represents a tradeoff
between convergence speed and precision. In the first phase, larger learning rates allow the model to look
at bigger swaths of our training landscape. The later phase with lower learning rates then focuses on small
adjustments once a promising optima region is found.
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6.5.5 Overcoming Hardware Bottlenecks

Addressing the memory bottleneck presented by hardware is a huge research area in Al development. Solutions
include both system-level software and architectural optimizations.

At the lowest level, we have custom kernels, which are specialized pieces of GPU code that optimize
hardware efficiency. There is also kernel fusion, which combines multiple sequential operations into a single
kernel, eliminating memory overhead and extraneous operations. They are particularly helpful for operations
like layer normalization and attention mechanisms in modern architectures—like transformers.

At the architectural levels, we have gradient accumulation— which as the name implies—accumulates
gradients across several model passes (forward and backward) prior to updating model weights. This helps
with memory bottlenecks.

Gradient checkpointing is another method to trade computation for memory. It involves ignoring
several intermediate activations during a forward pass, and instead computing them during backpropagation.

Gradient clipping refers to limiting the maximum size of gradients (which typically grow over time).
This combats the "exploding gradient problem", which hurts model convergence and numerical stability.

Finally, models can be trained across disparate hadware using distributed training approaches. Fully
Sharded Data Parallelism (FSDP) and ZeRO allow for sharing parameters, gradients, and optimizer states
across devices, and only regathering full parameters when needed (during forward and backward passes).
This parameter splitting can also be done through tensor parallelism, which divides high dimensional matrices
across hardware. Decentralized training has been particularly effective as hyperscalers (players training large
AT models) look to expand their capabilities.

6.5.6 Curriculum Learning

Curriculum learning is another method to optimize the training process. It involves gradually increasing the
"difficulty" of training examples (as opposed to training in an arbitrary order), which can lead to quicker
convergence and more optimal learning.

6.6 Fine Tuning

While conceptually very similar to transfer learning, fine-tuning is the process of taking a pre-trained model
and adapting it to a specific task by continuing training on a new, usually smaller, dataset (typically 1 to 10
percent the size of our pre-training dataset). This is essentially specializing your model to a specific use-case,
and is incredibly powerful, especially when training data is extremely limited.

There are several ways this can be implemented. The more involved version, "full" fine-tuning involves
updating all model parameters during the additional training process. "Partial" fine-tuning, on the other
hand, leaves most early layers frozen (weights don’t get updated) and updates only a couple of final layers.
Fine-tuning typically employs a small learning rate, so as to not radically change existing parameters from
the pre-trained model.

6.7 Transfer Learning

Training ML models is expensive in terms of time, compute, and funding. As researchers experimented with
new applications, they found that they could take models that had been applied to different problems and
use them as a starting point for tackling a new problem. This approach, called transfer learning, leverages
the fact that models often learn generalizable features in their early layers.

For example, a vision model might learn to detect edges, shapes, and textures that are useful across many
visual tasks, as would a language model already trained on a massive, general corpus of text data.
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7 Advanced Topics

UILDING on the foundations we’ve established in earlier sections, the following topics reflect specialized
B applications and emerging paradigms. We will barely scratch the surface of these areas, from time-series
analysis to diffusion models, but hope that this section can serve as useful context for reference. When you
come across any of these in the future, you will hopefully have seen it mentioned here before, however briefly.

7.1 Time Series Analysis

Time series analysis addresses prediction tasks with temporal components, like stock prices. Autoregressive
(AR) models predict future values based on past data. An AR(1) model considers the immediately pre-
ceding value, while AR(n) examines n previous points, offering improved accuracy at higher computational cost.

Moving average (MA) models learn from past prediction errors rather than values. An MA(1) model
adjusts based on its previous error, while MA(n) incorporates n past errors. ARIMA models combine both
approaches, incorporating previous values and errors while examining higher-order differences between data
points. For data with recurring patterns, Seasonal ARIMA models leverage repeating patterns..

7.2 Diffusion Models

Diffusion models represent a novel approach to generative Al through iterative noise manipulation. The
process involves gradually adding noise to data during training, then learning to reverse this process for
generation. Unlike GANs, diffusion models offer more stable training and better quality control.

Diffusion Process:

Q($t|iﬁt71) = N(!Et; \/1—;&%717 BtI)
po(zi—1|ae) = N(@i—1; po (x4, 1), Xo (24, 1))

These models excel in text-to-image generation, image editing, and other creative applications.

Forward Process: Noise Addition

q(x1|zo) q(z2]z1) q(xr|rr—1)

xo(Original) x1 (Noisier) x2(Even Noisier) 27 (Pure Noise)

w1 N J

])()('1.()"11) ])(;(,["[‘ 2‘,1"/' l)

po(zr—1|7T)
Reverse Process: Denoising

Figure 42: The forward process (black) gradually adds noise to an original data sample x until it becomes
pure noise . The reverse process (red) iteratively denoises the noisy sample to recover the original data

7.3 Graphs and Graph Theory

Graphs provide a framework for modeling relationships through nodes and edges. At its core, a graph
G = (V, E) counsists of a set of nodes, called vertices V', and a set of links/connections, called edges E.

48



7.3.1 Basic Graph Properties

Direction: Edges can be directed (one-way) or undirected.

Weight: Edges can carry weights (distances, costs).

Degree: Number of edges connected to a vertex.

Walk: Sequence of alternating vertices and edges where each edge connects its adjacent vertices.
Path: Walk with no repeated vertices.

Connected: A graph where there exists a path between any two vertices.

Cycle: Path returning to starting vertex.

Example: Graphs

For graph G = (V, E) with vertices V = {4, B, C, D}:
Ordered pairs (directed edges): E = {(A B),(B,C),(C,D),(D,A),(A,C)}
Unordered pairs (undirected edges): E = {{A, B} {B, C} {C,D }, {D,A}, {A,C}}
With weights: E = {(4, B,5),(B,C,2),(C,D,3),(D,A,4),(4,C,1)}

When representing graphs computationally, we often use adjacency lists or adjacency matrices. This trans-
formation encodes the graph structure into a linked list or matrix structure where each entry indicates
connection strength between nodes.

Figure 43: A simple graph G = (V, E) with a set of vertices V' (nodes) and edges E (links)

For an unweighted graph, the adjacency matrix A;; is defined as:

A {1 if vertices ¢ and j are connected
ij =

0 otherwise

For weighted graphs, the binary values are replaced with edge weights. Several traversal strategies exist:
Breadth-First Search (BFS) explores level by level, while Depth-First Search (DFS) explores as far as
possible along each branch before backtracking. While originally developed for trees, these algorithms also
work on general graphs by tracking visited nodes. We recommend this video| to help visualize these processes.

Sample Graph Traversal Process:

1. Start at designated root node

2. Mark current node as visited

3. Explore neighboring nodes

BFS: Visit ALL neighbors before moving to next level
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https://www.youtube.com/watch?v=cS-198wtfj0

DFS: Visit ONE neighbor and its children completely before trying siblings
4. Repeat until all nodes visited

7.3.2 Special Graph Structures:

Many graphs have properties that resemble "special" graph structures. These include trees (connected graphs
with no cycles), directed acyclic graphs (DAGs, directed graphs with no cycles), complete graphs (where
every vertex connects to every other vertex), and bipartite graphs (where vertices divide into two sets with
edges only between sets, not within).

Figure 44: A tree structure with a hierarchical relationship of one root, two children, and four grandchildren

Modern approaches transform these discrete graph structures into continuous vector spaces while preserv-
ing their underlying relationships. By taking random walks through graphs, you can generate sequences of
connected nodes that help algorithms learn meaningful embeddings. This forms the foundation for powerful
techniques like node2vec and DeepWalk, which create vector representations that capture the graph’s structure.

Several specialized graph structures appear frequently in machine learning. Trees provide a cycle-free
structure perfect for decision-making algorithms. Directed Acyclic Graphs allow multiple paths forward
without loops, making them ideal for representing neural network computations. Bipartite graphs (bipartite
means two parts) with two distinct sets of nodes model multi-object interactions. Graph theory offers various
algorithms for exploring and analyzing these structures, including traversal and dimensionality-reduction
techniques.

7.4 Graph Neural Networks

Graph Neural Networks (GNNs) process data structured as graphs, capturing relationships between
entities. They operate through message passing between nodes, aggregating neighbor information to update
representations. This architecture suits various tasks from molecular property prediction to social network
analysis.

Message Passing Framework:

h(¥) = UPDATE® (hg’H), AGGREGATE® ({hgf—U cueN (v)}))

Key challenges include handling variable graph sizes, preventing over-smoothing of node features, and
scaling to large graphs. Recent advances focus on improved architectures and efficient training methods.
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AGGREGATE®) — UPDATE®) —>

h{¥) — UPDATE® (hf,’“% AGGREGATE® ({h™" s ue /\/(v)}))

Figure 45: Visualization of the Message Passing Framework in Graph Neural Networks. The central node v
updates its representation by aggregating messages from its neighbors and then applying an update function

7.5 Agentic Al

Agentic Al refers to Al systems that make autonomous decisions to achieve complex goals, typically without
constant supervision. Multi-step reasoning enables agentic Al to use language models to break down complex
problems into sequential tasks, track context across steps, and adjust dynamically based on new data.

By employing planning graphs, decision trees, and pathfinding algorithms, these systems refine decision-
making through iterative analysis and structured reasoning. Multi-agent systems enable collaboration across
multiple agents to coordinate actions and share information.

Such systems can coordinate through centralized or decentralized networks, using hierarchical or flexible
structures to manage collaboration, while coalition and team-based coordination enable dynamic reorganization
in complex environments.

Goal / Objective

€= === - - ==

Reward / Feedback Guidance
Environment < Obserx./atlons > Agentic Al
Actions

Figure 46: An agentic Al system interacting with an environment, visualized. The agent observes states from
the environment and takes actions that affect it, all while pursuing a goal or objective. Rewards or feedback
may be returned from the environment to guide the agent’s behavior
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8 Conclusion

HIS "ML Grimoire" has hopefully served as a brief introduction to foundational machine learning
T concepts and practices. While we attempt to be somewhat comprehensive, this document still represents
only a snapshot of a rapidly evolving field. We strongly encourage you to explore these topics further through
the provided resources and stay engaged with emerging developments.
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Further Reading

Below we’ve compiled (in no particular order) some resources to help you go deeper on many of the concepts
the Grimoire has discussed, as well as consider some more advanced topics.

In particular, we’d love to highlight the incredible content that Grant Sanderson, Andrew Ng, and Andrej
Karpathy have shared and made freely available, linked below. This is by no means an exhaustive list—think
of it as simply a starting point for further exploration.

Textbooks & Courses

Deep Learning (Goodfellow et al.)
Speech & Language Processing (Jurafsky)
FElements of Statistical Learning

Pattern Recognition and Machine Learning
(Bishop)

Probabilistic Machine Learning| (Murphy)
Dive into Deep Learning

Information Theory, Inference, and Learning
Algorithms| (MacKay)

Interpretable Machine Learning (Molnar)
Stanford CS231n: CNNs

Stanford CS324: LLMs

Fast.ai Deep Learning

Deep Learning Specialization (Andrew Ng)
MIT Introduction to Deep Learning
Hugging Face Course

Bayesian Methods for Hackers

TensorFlow Neural Network Playground

Foundation Models in Practice

Articles

Understanding Bayes Theorem
Graph Theory Introduction
Perceptron: Beginner’s Guide
Understanding LSTM Networks
RNN vs GRU vs LSTM

GRU: Smart Sequence Prediction
DenseNet GitHub
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How Transformers Work

Batch Norm Explained Visually

The Illustrated Transformer| (Jay Alammar)
Attention? Attention!| (Lilian Weng)

Chain Rule: Backbone of Backpropagation
Gradient Descent Unraveled

Best Optimizer Comparison

Optimization: From SGD to Adam
Transfer Learning Explained

The Scaling Hypothesis

A Recipe for Training Neural Networks (Karpa-
thy)

Interpreting Decision Trees
Everything About Random Forest
PCA in Face Recognition

Gradient Boosting Machines
Introduction to t-SNE

What is Reinforcement Learning
AIC, BIC and Model Selection

A Deep Dive into GANs (Lilian Weng)
Probability Distributions in ML
Common Probability Distributions
Mechanistic Interpretability Glossary
Sparse Autoencoders for LLMs
Distill.pub

Anthropic’s Circuit Analysis

Feature Visualization (Olah et al.)


https://www.deeplearningbook.org/
https://web.stanford.edu/~jurafsky/slp3/
https://hastie.su.domains/ElemStatLearn/
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://github.com/probml/pml-book
https://d2l.ai/
http://www.inference.org.uk/mackay/itila/book.html
http://www.inference.org.uk/mackay/itila/book.html
https://christophm.github.io/interpretable-ml-book/
http://cs231n.stanford.edu
https://stanford-cs324.github.io/winter2022/
https://course.fast.ai/
https://www.coursera.org/specializations/deep-learning
http://introtodeeplearning.com/
https://huggingface.co/course/chapter1/1
https://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/
https://playground.tensorflow.org/
https://crfm.stanford.edu/ecosystem-intro.html
https://medium.com/@glennlenormand/understanding-bayes-theorem-4e283fefe4ec
https://medium.com/basecs/a-gentle-introduction-to-graph-theory-77969829ead8
https://www.webpadi.com/what-is-perceptron-a-beginners-guide-for-2024/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://medium.com/analytics-vidhya/rnn-vs-gru-vs-lstm-863b0b7b1573
https://towardsdatascience.com/gru-recurrent-neural-networks-a-smart-way-to-predict-sequences-in-python-80864e4fe9f6/
https://github.com/liuzhuang13/DenseNet
https://www.datacamp.com/tutorial/how-transformers-work
https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739/
https://jalammar.github.io/illustrated-transformer/
https://lilianweng.github.io/posts/2018-06-24-attention/
https://medium.com/@ppuneeth73/the-chain-rule-of-calculus-the-backbone-of-deep-learning-backpropagation-9d35affc05e7
https://towardsdatascience.com/gradient-descent-unraveled-3274c895d12d-2/
https://shaoanlu.wordpress.com/2017/05/29/sgd-all-which-one-is-the-best-optimizer-dogs-vs-cats-toy-experiment/
https://medium.com/@florian_algo/optimization-algorithm-from-sgd-to-adam-50ea22187951
https://www.ibm.com/think/topics/transfer-learning
https://gwern.net/scaling-hypothesis
https://karpathy.github.io/2019/04/25/recipe/
https://insidelearningmachines.com/interpret_decision_trees/
https://medium.com/@abhishekjainindore24/everything-about-random-forest-90c106d63989
https://medium.com/@eraydura_61041/principal-component-analysis-pca-and-machine-learning-in-face-recognition-7c3f7833844b
https://www.linkedin.com/pulse/introduction-gradient-boosting-machines-gbm-powerful-ensemble-sachin-fhdlc/
https://www.datacamp.com/tutorial/introduction-t-sne
https://swisscognitive.ch/2019/10/25/what-is-reinforcement-learning/
https://medium.com/@gopal.sukumar/aic-bic-penalties-and-the-science-behind-model-selection-bd0d4d06d335
https://lilianweng.github.io/posts/2017-08-20-gan/
https://jonathan-hui.medium.com/probability-distributions-in-machine-learning-deep-learning-b0203de88bdf
https://medium.com/@srowen/common-probability-distributions-347e6b945ce4
https://www.neelnanda.io/mechanistic-interpretability/glossary
https://adamkarvonen.github.io/machine_learning/2024/06/11/sae-intuitions.html
https://distill.pub/
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://distill.pub/2017/feature-visualization/

YouTube Channels & Videos
e [llustrated Guide to LSTMs and GRUs

Cross Entropy Loss Visualized

What is Time Series Data

StatQuest with Josh Starmer

3Bluel Brown

Andrej Karpathy
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